Crucial role of SDF-1/CXCR4 interaction in the recruitment of transplanted dermal multipotent cells to sublethally irradiated bone marrow.

نویسندگان

  • Zhao-Wen Zong
  • Tian-Min Cheng
  • Yong-Ping Su
  • Xin-Ze Ran
  • Nan Li
  • Guo-Ping Ai
  • Hui Xu
چکیده

Our previous study indicated that dermal multipotent cells (DMCs) could engraft into bone morrow (BM) of rats with sublethal irradiation and promote hematopoietic recovery after being transplanted systemically, but the mechanisms determining the recruitment of DMCs to the irradiation injured BM remain unclear. In the present study, we investigated the role of stromal cellderived factor-1 (SDF-1)/CXCR4 interaction in this process. Male DMCs were isolated and transplanted into female rats systemically, and by employing quantitative real-time TaqMan polymerase chain reaction for the sex-determining region of Y chromosome, it was found that the amount of DMCs in BM of rats with sublethal irradiation was about 3 times more than that of normal rats (P < 0.01). Incubation of DMCs with AMD3100 before transplantation, which specifically blocks binding of SDF-1 to its endogenous receptor CXCR4, diminished recruitment of DMCs to the injured BM by 57.2 +/- 5.5% (P < 0.05). In addition, it was confirmed that the expression of SDF-1 in injured BM was up-regulated when compared with that in normal BM, and in vitro analysis revealed that BM extracts from irradiated rats had a strong chemotactic effect on DMCs, which decreased significantly when DMCs were pre-incubated with AMD3100 (P < 0.05). These data suggest that transplanted DMCs were recruited more frequently to irradiation-injured BM than normal BM and the interactions of SDF-1/CXCR4 played an important role in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CXCR4 gene transfer enhances the distribution of dermal multipotent stem cells to bone marrow in sublethally irradiated rats.

Our previous study indicated that systemically transplanted dermal multipotent cells (DMCs) were recruited more frequently to bone morrow (BM) of rats with sublethal irradiation than that of normal rats, and the interactions between stromal-derived factor (SDF-1) and its receptor (CXC chemokine receptor 4, CXCR4) played an important role in this process. In the present study, we aimed to invest...

متن کامل

بررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان

Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...

متن کامل

Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury

Both the homing of hematopoietic stem cells (HSCs) to the bone marrow and their engraftment in recipients of bone marrow transplants are primarily mediated by the chemokine stromal-derived factor-1 (SDF-1) or CXCL12, which activates CXCR4, its cognate receptor on HSCs. We showed that the recruitment and temporary attachment of CXCR4-expressing cells, such as HSCs and a fraction of mesenchymal s...

متن کامل

Simvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway

Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...

متن کامل

Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice.

BACKGROUND AND OBJECTIVES The use of mesenchymal stem cells (MSC) for cell therapy relies on the capacity of these cells to home and engraft long-term into the appropriate target tissue(s). Homing of MSC to bone marrow (BM) post-transplantation can occur, but does so with only poor efficiency. This study was designed to evaluate the role of the SDF-1/CXCR4 axis in the homing of Flk1+ MSC derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 47 3-4  شماره 

صفحات  -

تاریخ انتشار 2006